In humans, vision is paramount for quality of life, and the impairment of sight represents a highly incapacitating condition. Vision loss or dysfunction can be caused by obstruction of the light path to the neural retina or inability of the retina to detect and/or transmit light-triggered signals to the brain. Mouse models provide fundamental insights into the associated biological pathways and often display phenotypes that are similar to clinical manifestations of the corresponding disease in humans, providing an opportunity to decipher mechanisms of disease pathology as well as develop innovative therapies. The main objective of our research program is to identify, characterize,preserve and distribute mice with genetically caused ocular disorders. These well-characterized models are used to support and promote vision research with the ultimate goal of advancing the elucidation, treatment and cure of heritable eye diseases. We have recently characterized mutations that may provide models for retinal degeneration diseases, including retinitis pigmentosa, a group of eye diseases that lead to progressive vision loss and eventual blindness, and for human achromatopsia, a key feature of which is the absence of color discrimination. Our laboratory is also studying the genetic defects in models for glaucoma, cataracts and photoreceptor function loss.